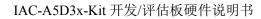


IAC-A5D3x-Kit开发/评估板 硬件说明书


版本号 v1.0 2013 年 12 月

杭州启扬智能有限公司版权所有 QIYANG TECHNOLOGY Co., Ltd Copyright Reserved

版本更新记录

版本	硬件平台	描述	日期	修订人
1.0	IAC-A5D3x-Kit	初始版本,首次发布	2013-12-20	ST

目录

— ,	前言	4
	1.1、公司简介	4
	1.2、IAC-A5D3X-Kit 开发/评估板的使用建议	
_,	系统组成	
	2.1、ARM 内核性能对比	5
	2.2、SAMA5D3 处理器系列功能	6
	2.3、开发/评估板资源	8
	2.4、核心板资源	9
	2.5、底板资源	9
三、	接口说明	10
	3.1、开发板接口框图:	10
	3.2、基本接口说明:	10
	3.3、接口引脚定义:	12
四、	器件连接示图	19
五、	开发板性能指标	20
六、	尺寸结构图	20
七、	软件描述	21
八、	附注	2.1

阅读前须知:本手册主要介绍该产品板的硬件接口

前言

1.1、公司简介

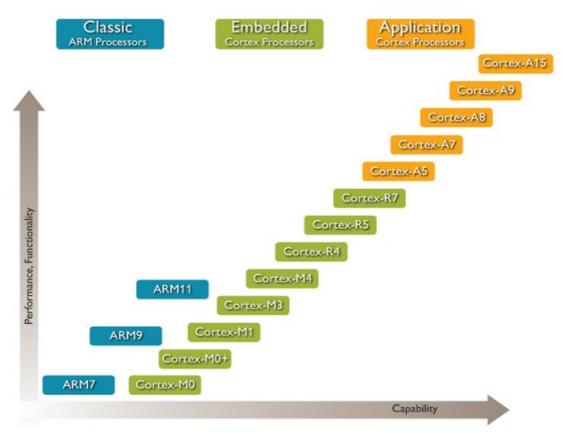
杭州启扬智能科技有限公司位于美丽的西子湖畔,是一家专业研发,生产,销售高性能,低功耗,低成本,小体积嵌入式计算机主板,提供嵌入式硬件解决方案的高新技术企业。

多年来专注于嵌入式 ARM 工控产品的研发与服务,为嵌入式开发工程师提供简单易用的开发工具,参考设计平台,可量产的产品解决方案,帮助客户缩短新产品上市时间,提高产品质量,立志成为业界领先的嵌入式硬件和软件提供商。

我们为您提供:

- ◆ 研发,生产,销售有自主知识产权的嵌入式模块产品,与 TI, ATMEL, Cirrus Logic,Freescale 等知名处理器厂商合作,推出了一系列的 ARM 开发/评估板,ARM 核心板,ARM 工控板,音/视频编解码传输平台等硬件产品以及支持用户进行快速二次开发的配套工具与软件资源。
- ◆ 充分发挥我们在 ARM 平台及 Windows CE, Linux, Android 操作系统上的技术积累, 为众多行业用户提供量身定制服务(OEM/ODM), 实现嵌入式产品稳定,可靠,快速地走入市场。

感谢您使用启扬智能的产品,我们会尽最大努力为您提供技术协助!祝愿您工作顺利!


1.2、IAC-A5D3x-Kit 开发/评估板的使用建议

- 1) 使用开发板之前,请务必首先阅读本说明书;
- 2) 使用前请详细核对装箱单,检测资料光盘是否有文件缺失;
- 2) 了解开发板的基本结构和组成,包括硬件资源的分配,核心板与底板的各个引脚定义,以及扩展引脚定义等等;
- 3) 如果您需要在 Linux 系统下进行设计开发,对开发板进行程序烧录,除本文档外,还建议阅读另一篇文档《IAC-A5D3x-Kit Linux 用户手册》;
- 4) IAC-A5D3x-Kit 嵌入式开发/评估板,接受底板定制开发服务及核心板批量订购。

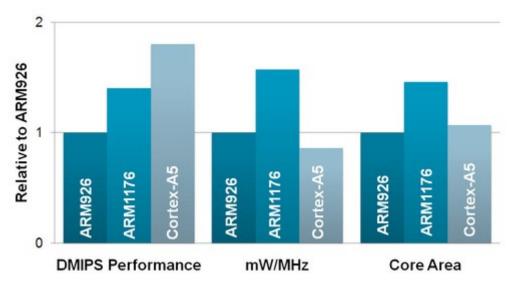
二、系统组成

2.1、ARM 内核性能对比

内核	ARM9	ARM11	Cortex A5	Cortex A8	Cortex A9
架构(指令集)	ARMv5TE	ARMv6	ARMv7	ARMv7	ARMv7
预期实现	200-470 MHz	400-1000 MHz	300-800 MHz	600-1000 MHz	600-1000 MHz
DMIPS/MHz	1.1	1.25	1.57	2.0	2.5

Cortex-A5 处理器可为现有 ARM926EJ-S™ 和 ARM1176JZ-S™ 处理器设计提供很有价值的迁移途径。它可以获得比 ARM1176JZ-S 更好的性能,比 ARM926EJ-S 更好的功效和能效以及 100% 的 Cortex-A 兼容性。

这些处理器向特别注重功耗和成本的应用程序提供高端功能,其中包括:

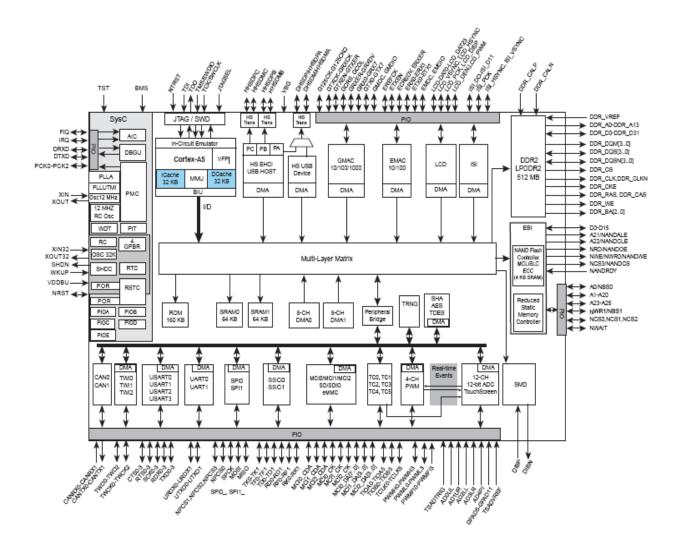

- •多重处理功能,可以获得可伸缩、高能效性能
- •用于媒体和信号处理的可选浮点或 NEON™ 单元
- •与 Cortex-A8、Cortex-A9 和经典 ARM 处理器的完全应用兼容性
- •高性能内存系统,包括高速缓存和内存管理单元

有任何技术问题或需要帮助,请联系: supports@qiyangtech.com

购买产品,请联系销售: sales@qiyangtech.com 更多信息请访问: http://www.qiytech.com

©2012 Qiyangtech 版权所有

Cortex A5 与 ARM9、ARM11 对比


2.2、SAMA5D3 处理器系列功能

IAC-A5D3x-Kit 开发/评估板,采用 ATMEL SAMA5D3x 系列芯片,Cortex A5 内核,**启扬的开发/评估板以 SAMA5D34 为标准的配置**,批量定制用户可以根据需要选择不同型号的处理芯片以适当降低成本,具体型号之间的区别见下表:

	SAMA5D31	SAMA5D33	SAMA5D34	SAMA5D35
LCDC	•	•	•	
GMAC		•	•	•
EMAC	•			•
CANO, CAN1			•	•
HSMCI2	•		•	•
UART0	•			•
UART1	•			•
TC1				•

IAC-A5D3x-Kit是ATMEL推出的ARM Cortex-A5 系列采用ARM v7-A Thumb2指令集的微处理器。自 带32 kb数据缓存、32kb指令缓存、虚拟内存系统架构(VMSA),完全集成的MMU和浮点单元(VFPv4),并且SAMA5D3x带有极其丰富的接口资源,器件功能框图如下:

- ◆ 采用 ARM Cortex A5 内核, 主频高达 536MHZ
- ◆ 带 24 位 LCD 控制器和触摸屏控制器,最高分辨率可达 2048*2048
- ◆ 带 2 个具有集成 PHY 的 USB2.0 高速 OTG
- ◆ A5D3x 系列处理器最多自带 6 个用户可用 UART
- ◆ 集成 2 个工业用以太网 MAC (10/100MHZ)
- ◆ 多达 2 个控制器局域网络(CAN)端口,支持 CAN2.0 A 和 B 协议
- ◆ 2路多功能音频通道
- ◆ 多路 SPI、I2C、ISI、JTAG、定时器、PWM、RTC 等常用外设

2.3、开发/评估板资源

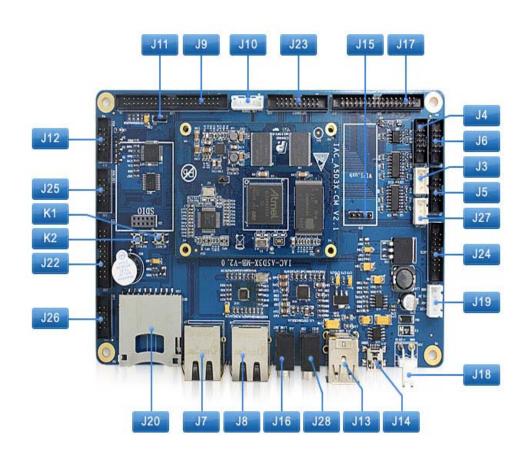
	CPU	ATMEL SAMA5D34 CPU,ARM Cortex A5 内核,主频高达 536MHZ						
	RAM	DDR2 SDRAM,总共 256M						
	Flash	256MB NandFlash, 2MB DataFlash						
	网络	DM9162 网络芯片采用 MII 模式完美支持 10M/100M 网口自适应						
		5 路 RS232 串口, 其中: 1 路为调试串口, 2 路 RS232 与 RS485 复用						
		3 路 USB2.0,其中: 1 路 USB2.0 DEVICE, 2 路 USB2.0 HOST						
开发板硬件资	通讯接口	1 路 CAN 接口,支持 CAN2.0 协议						
友		2 路 10/100Mbps 工业用以太网,带有 ACT、LINK 指示灯						
极		PWM 接口; SPI 接口; I2C 接口						
健	显示接口	18 位 TFT-LCD (兼容 24 位) 最高分辩率可达 2048 x 2048						
件	业小安口	VGA 接口,可连接通用显示器						
资	音频接口	双声道音频输出,MIC 音频输入						
源	输入接口	8x8 矩阵键盘,可做 I/O 使用						
	- 個八安日	4 线电阻触摸屏接口;AD 输入接口						
	扩展接口	EBI 总线接口						
	1) 及1女口	USB_WIFI 接口						
	存储接口	1路SD卡接口						
	其他设备	复位电路、看门狗电路、实时时钟、蜂鸣器、JTAG 接口						
	电源输入	+12V 供电,可支持+6V~+23V 宽范围电压供电						
		开发环境:虚拟机 VM9.0.2+ubuntu12.04.1						
	开发工具	应用层开发调试工具						
提	7120-71	交叉编译器						
供		常用终端开发调试工具						
答	系统镜像	对应操作系统的镜像文件,支持多分辨率显示						
料	测试程序	接口应用 demo 测试程序以及测试程序源码						
411	源代码	bootloader、kernel、文件系统源代码						
	手册	主板用户指导手册、主板器件手册						
	机械图	主板结构尺寸图						
曲	尺寸	核心板: 74mm*53mm; 底板: 160mm*110mm						
电气	板层	核心板: 8层板高精度沉金工艺; 底板: 4层板高精度沉金工艺						
八 特 性	功耗	单核心板<1W; 整板≤2W						
性_	工作温度	-20℃ ~+70℃ (可根据用户需求定制使用工业级温宽器件)						
	工作湿度	5%到 95%,非凝结						

2.4、核心板资源

IAC-A5D3x-CM 核心板采用 8层 PCB 板高精度工艺,具有最佳的电气性能和抗干扰性能;集成了 CPU、NandFlash、RAM、网络芯片等,多达 200 个引出脚,充分扩展了 SAMA5D3x 的硬件资源,使用户可通过 复用管脚,组合出不同的接口功能,也可以自行进行硬件上的裁剪,开发出最符合需求的产品底板。

核心板背面

- ◆ 板载 ATMEL SAMA5D34 CPU,主频高达 536MHz;
- ◆ 板载 256M DDR2 SDRAM 、256MB NandFlash 、2MB DataFlash;
- ◆ 板载 DM9162 网络芯片,采用 MII 模式,完美支持 10M/100M 网口自适应;
- ◆ IAC-A5D3x-CM 核心板采用 8 层 PCB 板高精度工艺,具有最佳的电气性能和抗干扰性能;
- ◆ 板卡规格: 74mm * 53mm, 仅为名片大小, 适合各种嵌入式场合使用;
- ◆ 核心板短边采用 2 条 2*50 BtoB 接插件引出核心板所有的资源,方便用户硬件裁剪和多平台使用;
- ◆ 电源: 5V 供电,采用 TI 的 MPU 管理芯片,输出核心板所需的所有电压,超低功耗,单板小于 1W;
- ◆ 提供复位电路和唤醒电路:


2.5、底板资源

启扬智能扩展了标准的 IAC-A5D3x-MB 底板,采用高精度 4 层板工艺,具有最佳的电气性能和抗干扰性能,充分扩展了 SAMA5D3x 所支持的各种接口资源,用户可根据自己的需求自行定制底板!

三、接口说明

3.1、开发板接口框图:

3.2、基本接口说明:

标号	功能		
Ј3	调试串口		
J4	串口 1&RS485_1 接口		
J5	串口 0&串口 3		

有任何技术问题或需要帮助,请联系: <u>supports@qiyangtech.com</u>

购买产品,请联系销售: sales@qiyangtech.com

更多信息请访问: http://www.qiytech.com

©2012 Qiyangtech 版权所有

J6	串口 2&RS48_2 接口	
Ј7	以太网接口 0	
Ј8	以太网接口1	
Ј9	LCD 接口	
J10	I2C 电容屏接口	
J11	LCD 供电选择	
J12	VGA 接口	
Л13	2 路 USB Host 接口	
J14	USB Device 接口	
J15	预留 USB WIFI 接口和 USB Device 复用	
J16	音频输出接口	
J17	EBI 总线接口	
J18	12V 电源输入接口	
J19	预留多电压电源输出接口	
J20	SD 卡接口	
J21	SDIO 接口	
J22	ISI 接口	
J23	8x8 矩阵键盘接口	
J24	JTAG 调试接口	
J25	ADC&I2C1 接口	
J26	SPI 接口	
J27	CAN 接口	
J28	MIC 音频输入接口	
K1	复位按键	
K2	唤醒按键	

3.3、接口引脚定义:

J1:

信号名	引脚	引脚	信号名
GND	1	2	GND
GND	3	4	GND
USB0_DP	5	6	PIO_D31
USB0_DM	7	8	NC
PIO_D30	9	10	PIO_D29
USB1_DP	11	12	PIO_D28
USB1_DM	13	14	NC
JTAG_NTRST	15	16	JTAG_TCK
JTAG_TDI	17	18	JTAGSEL
JTAG_TMS	19	20	JTAG_TDO
CAN0_RX	21	22	PIO_D16
CAN0_TX	23	24	PIO_B18
PIO_C29	25	26	PIO_B25
PIO_C30	27	28	PIO_E16
EBI_A0	29	30	PIO_E17
EBI_A1	31	32	PIO_E29
I2C1_SDA	33	34	I2C1_SCL
SSC0_TF	35	36	SSC0_RF
NC	37	38	USB2_DP
NC	39	40	USB2_DM
PIO_E20	41	42	GND
DEBUG_RXD	43	44	DEBUG_TXD
UART0_RXD	45	46	UART0_TXD

TECHNOLOGY			IAC-ASDSX-KII 月 次/ 奸怕
UART1_RXD	47	48	UART1_TXD
UART1_CTS	49	50	UART1_RTS
UARD2_RXD	51	52	UART2_TXD
UART2_CTS	53	54	UART2_RTS
UART3_RXD	55	56	UART3_TXD
GND	57	58	MCI0_D4
MCI0_D5	59	60	PWMH3
PWML3	61	62	PIO_E11
PIO_E10	63	64	PIO_E13
PIO_E12	65	66	PIO_E15
PIO_E14	67	68	GND
FIQ	69	70	EBI_IRQ
EBI_NCS1	71	72	EBI_NCS2
EBI_NRD	73	74	EBI_NWE
EBI_NWAIT	75	76	EBI_A2
EBI_A3	77	78	EBI_A4
EBI_A5	79	80	EBI_A6
EBI_A7	81	82	EBI_A8
EBI_A9	83	84	EBI_D0
EBI_D1	85	86	EBI_D2
EBI_D3	87	88	EBI_D4
EBI_D5	89	90	EBI_D6
EBI_D7	91	92	EBI_D8
EBI_D9	93	94	EBI_D10
EBI_D11	95	96	EBI_D12
EBI_D13	97	98	EBI_D14

EBI_D15 99 100 GND

J2:

信号名	引脚	引脚	信 号 名
GND	1	2	AVDDT
TPRX-	3	4	TPTX-
TPRX+	5	6	TPTX+
LED_LNK	7	8	LED_ACT
SPI1_NCS3	9	10	GND
SPI1_NCS0	11	12	SPI1_SCLK
SPI1_MISO	13	14	SPI1_MOSI
MCI1_CMD	15	16	MCI1_CLK
MCI1_D0	17	18	MCI1_D1
MCI1_D2	19	20	MCI1_D3
SSC0_RD	21	22	SSC0_RK
I2C0_SDA	23	24	I2C0_SCL
MCI0_CMD	25	26	MCI0_CLK
MCI0_D0	27	28	MCI0_D1
MCI0_D2	29	30	MCI0_D3
SSC0_TD	31	32	SSC0_TK
GND	33	34	LCD_D7
LCD_D6	35	36	LCD_D5
LCD_D4	37	38	LCD_D3
LCD_D2	39	40	LCD_D1
LCD_D0	41	42	LCD_D15
LCD_D14	43	44	LCD_D13

TECHNOLOGY			IAC-ASDSX-KII 月及/奸怕
LCD_D12	45	46	LCD_D11
LCD_D10	47	48	LCD_D9
LCD_D8	49	50	LCD_D23
LCD_D22	51	52	LCD_D21
LCD_D20	53	54	LCD_D19
LCD_D18	55	56	LCD_D17
LCD_D16	57	58	LCD_DE
LCD_PCLK	59	60	LCD_HS
LCD_VS	61	62	LCD_PWM
NC	63	64	LCD_DISP
GND	65	66	GND
ADC_D0	67	68	ADC_D2
ADC_D1	69	70	ADC_D3
ADC_D4	71	72	ADC_D6
ADC_D5	73	74	ADC_D7
GND	75	76	VDDBU
ETXD0	77	78	EMDC
ETXD1	79	80	EMDIO
ERXD0	81	82	PIO_C10
ERXD1	83	84	PIO_C11
ETXEN	85	86	PIO_C12
ECRSDV	87	88	PIO_C13
ERXER	89	90	PIO_C14
EREFCLK	91	92	PIO_C15
SYS_RSTN	93	94	WKUP
SHDN	95	96	ADTRG

+5.0VD	97	98	+5.0VD
+5.0VD	99	100	+5.0VD

J3:调试串口

引脚	信 号 名
Ī	J_DTXD
2	J_DRXD
3	GND

J4: 串口 1&RS485_1 接口

信号名	引脚	引脚	信号名
J_TXD1	1	2	J_RXD1
GND	3	4	GND
J_CTS1	5	6	J_RTS1
GND	7	8	GND
J_485A1	9	10	J_485B1

J5: 串口 3&串口 0 接口

信号名	引脚	引脚	信号名
J_TXD3	1	2	J_RXD3
GND	3	4	GND
NC	5	6	NC
GND	7	8	GND
J_TXD0	9	10	J_RXD0

J6: 串口 2&RS485_2 接口

信号名	引脚	引脚	信号名
J_TXD2	1	2	J_RXD2
GND	3	4	GND

J_CTS2	5	6	J_RTS2
GND	7	8	GND
J_485A2	9	10	J_485B2

J9: LCD 接口

信 号 名	引脚	引脚	信号名
GND	1	2	LCD_PCLK
LCD_HS	3	4	LCD_VS
GND	5	6	LCD_D12
LCD_D13	7	8	LCD_D14
LCD_D15	9	10	LCD_D16
LCD_D17	11	12	GND
LCD_D6	13	14	LCD_D7
LCD_D8	15	16	LCD_D9
LCD_D10	17	18	LCD_D11
GND	19	20	LCD_D0
LCD_D1	21	22	LCD_D2
LCD_D3	23	24	LCD_D4
LCD_D5	25	26	GND
LCD_DE	27	28	LCD_VDD
LCD_VDD	29	30	LCD_DISP
LCD_MOD	31	32	LCD_D20
LCD_PWM	33	34	NC
GND	35	36	NC
NC	37	38	NC
NC	39	40	NC

ADC_D0	41	42	ADC_D2
ADC_D1	43	44	ADC_D3

J10: I2C 电容触摸屏接口

引脚	信 号 名
1	GND
2	PIO_C14
3	PIO_C15
4	I2C0_SCL
5	I2C0_SDA
6	+3.3VD

J11: LCD 供电跳线选择

1 脚和 2 脚短接: 3.3V 供电 2 脚和 3 脚短接: 5.0V 供电

请根据实际的液晶屏或者驱动板来选择该电压

引脚	信号名
1	+3.3VD
2	LCD_VDD
3	+5.0VD

J12: VGA 显示接口

信号名	引脚	引脚	信号名
RED	1	2	GREEN
BLUE	3	4	HSYNC_VGA
GND_VGA	5	6	VSYNC_VGA
GND_VGA	7	8	GND_VGA
GND_VGA	9	10	GND_VGA

J15: USB_WIFI 预留接口

引脚	信 号 名
1	+3.3VD/+5.0VD
2	USB0_DM
3	USB0_DP
4	GND

J17: EBI 总线接口

信号名	引脚	引脚	信号名
+3.3VD	1	2	+3.3VD
EBI_IRQ	3	4	EBI_NCS1
EBI_NCS2	5	6	EBI_NRD
EBI_NWE	7	8	EBI_NWAIT
EBI_A0	9	10	EBI_A1
EBI_A2	11	12	EBI_A3
EBI_A4	13	14	EBI_A5
EBI_A6	15	16	EBI_A7
EBI_D0	17	18	EBI_D1
EBI_D2	19	20	EBI_D3
EBI_D4	21	22	EBI_D5
EBI_D6	23	24	EBI_D7
EBI_D8	25	26	EBI_D9
EBI_D10	27	28	EBI_D11
EBI_D12	29	30	EBI_D13
EBI_D14	31	32	EBI_D15
GND	33	34	GND

J19: 预留多电压电源输出接口

引脚	信 号 名
Ī	+12VD
2	+5.0VD
3	+3.3VD
4	GND

J21: SDIO 接口

信号名	引脚	引脚	信 号 名
+3.3VD	1	2	GND
SYS_RSTN	3	4	MCI1_D0
MCI1_D3	5	6	MCI1_CMD
MCI1_D2	7	8	MCI1_CLK
MCI1_D1	9	10	NC

J22: ISI 接口

信号名	引脚	引脚	信 号 名
+3.3VD	1	2	GND
I2C1——SCL (ISI_D10)	3	4	I2C1_SDA (ISI_D11)
I2C0_SDA (ISI_VSYNC)	5	6	I2C0_SCL (ISI_HSYNC)
PIO_C30 (ISI_PCK)	7	8	PIO_D31 (MAIN_CLK)
SPI1_NCS3 (ISI_D9)	9	10	PIO_C29 (ISI_D8)
LCD_D23 (ISI_D7)	11	12	LCD_D22 (ISI_D6)
LCD_D21 (ISI_D5)	13	14	LCD_D20 (ISI_D4)
LCD_D19 (ISI_D3)	15	16	LCD_D18 (ISI_D2)
ISI_RST	17	18	ISI_PWND
LCD_D17 (ISI_D1)	19	20	LCD_D16 (ISI_D0)

J23: GPIO&KEY 接口

信号名	引脚	引脚	信号名
+3.3VD	1	2	GND
EBI_A8	3	4	EBI_A9
PIO_E14	5	6	PIO_E15
PIO_E12	7	8	PIO_E13
PIO_E10	9	10	PIO_E11
PIO_E29	11	12	PIO_E17
PIO_E16	13	14	PIO_B25
PIO_B18	15	16	PIO_D16
PIO_C10	17	18	PIO_C11
GND	19	20	GND

J24: JTAG 接口

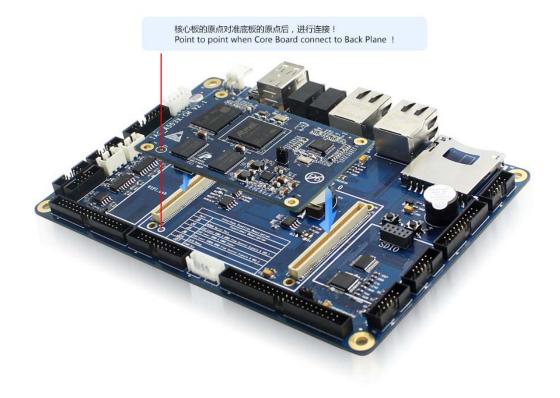
信号名	引脚	引脚	信号名
+3.3VD	1	2	+3.3VD
GND	3	4	JTAG_NTRST
GND	5	6	JTAG_TDI
GND	7	8	JTAG_TMS
GND	9	10	JTAG_TCK
GND	11	12	JTAGSEL
GND	13	14	JTAG_TDO
GND	15	16	SYS_RSTN

J25: AD&I2C 接口

信号名	引脚	引脚	信号名
+3.3VD	1	2	+3.3VD
ADTRG	3	4	ADC_D4
ADC_D5	5	6	ADC_D6
ADC_D7	7	8	I2C1_SDA
I2C1_SCL	9	10	GND

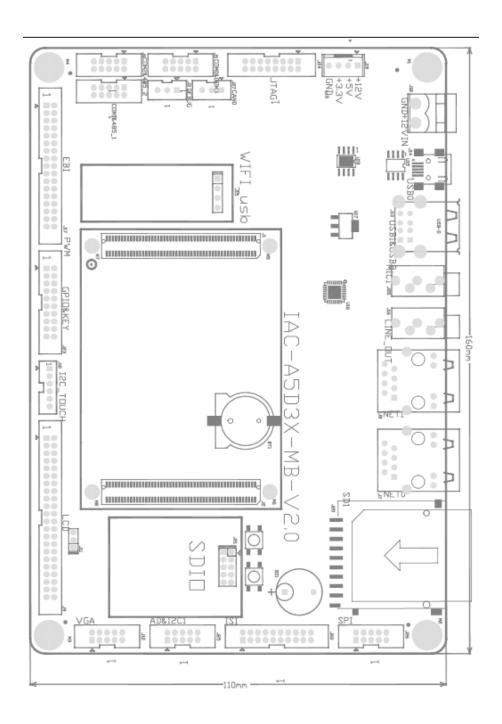
J26: SPI 接口

信号名	引脚	引脚	信号名
+3.3VD	1	2	+3.3VD
SPI1_MISO	3	4	SPI1_MOSI
SPI1_SCLK	5	6	SPI1_NCS0
SPI1_NCS3	7	8	GND
GND	9	10	GND


J27: CAN 接口

引脚	信 号 名
1	CANH0
2	CANL0
3	GND_CAN

四、器件连接示图


在硬件方面,IAC-A5D3X-Kit 开发/评估板产品,采用背插形式,通过主板的 2*100 BtoB 接插件与扩展板连接在一起,从而构成完整的智能设备,其连接方式如下图所示:

五、开发板性能指标

六、尺寸结构图

七、软件描述

IAC-A5D3X-Kit 提供的软件支持主要包括 Linux/Android。

在《IAC-A5D3X-Kit Linux 用户手册》中,详细介绍了 IAC-A5D3X-Kit 开发板提供的 Linux 开发环境的建立和使用,更详细内容请参考相关文档。

在《IAC-A5D3X-Kit Android 用户手册》中,详细介绍了 IAC-A5D3X-Kit 开发板提供的 Android 开发环境的建立和使用,更详细内容请参考相关文档。

八、附注

- 1、在连接 LCD 前,请先确认您的 LCD 模块电源规格;
- 2、请使用公司原配的接插附件, 以免误解造成主板的伤害;
- 3、我公司承诺,对本公司产品提供 E-mail,电话等通讯技术支持服务,终身维修服务;
- 4、我公司承诺,对本公司产品提供自售之日起 6 个月内免费维修服务,若用户在使用本公司产品期间,由于产品的质量问题而出现故障,可在保修期内凭购买单据与销售商或我公司联系,我公司负责为您维修产品或更换新机。
 - 5、为下列情况之一的产品,不实行免费保修:
 - 超过保修服务期;
 - 无有效购买单据:
 - 进液、受潮或发霉;
 - 由于购买后跌落、强烈震动或擅自改动、误操作等非产品质量原因引起的故障和损坏;
 - 因为不可抗力造成损坏。
- 6、我公司保留所有 IAC-A5D3X-Kit 产品中自主开发的相关软、硬件技术资料的知识产权;用户仅能讲它们作为教学、实验、科研使用,不得从事任何商业用途,也不能将它们在网络上散发,或者通过截取、修改等方式来篡改它们的著作权。
 - 7、本产品接受客户批量订购,公司将提供全方面的技术支持和服务。

杭州启扬智能科技有限公司

电话: 0571-87858811 / 87858822

传真: 0571-89935912

支持: 0571-89935913

E-MAIL: supports@qiyangtech.com

网址: http://www.qiytech.com

地址: 杭州市西湖区西湖科技园西园 1 路 8 号 3A 幢 5F 楼

邮编: 310013